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ABSTRACT 

This paper presents a conceptual review of the kriging metamodel that is introduced for the design and 

analysis of computer experiments (DACE). Kriging is a statistical interpolation method to build an 

approximation model from a set of evaluations of the function at a finite set of points. The method 

originally developed for geostatistics, and it is now widely used in the domains of spatial data analysis 

and computer experiments analysis. The main difference between these domains the dimensionality of the 

problems. Geostatistics and spatial data are mainly deal with the coordinates. Computer experiments, 

simulation outputs and other engineering problems have multidimensional input variables. With this 

study, it is aimed to examine the limitations of the prediction performance of the DACE-kriging 

metamodel. The result of the study shows that the regression part of the DACE-kriging metamodel is the 

most important part to develop an approximation, and if there is a spatial relationship of the residuals, 

kriging part will also contribute to the improvement of the prediction performance. Otherwise, kriging 

will have no contribution to the DACE-kriging metamodel, and even worsen the prediction performance. 

If the regression part perfectly fit to the observations, the residual will have poor spatial relationship and 

the kriging part will be meaningless anymore. 
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INTRODUCTION 

Kriging term covers several spatial interpolation models. Kriging theory was originally 

developed as a geostatistical interpolation method [1]. The kriging model makes predictions at 

unobserved locations using a linearly weighted combination of observations. Each observation 

influences the kriging prediction is based on geographical proximity to the unobserved 

location, the spatial spreads and the pattern of spatial correlation of the observations. Kriging 

models are meaningful only if the observations are spatially correlated. The kriging weights 

are recalculated using the appropriate variogram or correlogram model for each prediction 

point. There are many kinds of kriging in the literature such as simple kriging, ordinary kriging, 

universal kriging, cokriging, median polish kriging etc. [2]. 

Sacks et al. [3] presented a modified kriging approach as a metamodel to deterministic 

computer experiments. The use of kriging metamodels has been remarkably effective for global 

metamodeling in the design and analysis of computer experiments (DACE) community when 

the simulation models are complex and/or very expensive to run [4]. Their approach is a hybrid 

method that combines a regression between the output variable and input variables with the 

simple kriging (SK) of the regression residuals. Firstly, a polynomial regression model is 

applied to the outputs and then basic kriging applied to the residuals. Their main contribution 

to the kriging literature is expanding of the problem dimensions from two-dimensional 

coordinate to the high dimensional computer experiments. Additionally, they have used high 

dimensional correlogram models instead of variogram mostly used in geostatistics to find the 

kriging weights. Prediction at each new point is performed by summing the predicted trend and 

residual. The parameter set used for the regression part are estimated once for the whole search 

space, and for the kriging part the weights are re-estimated at each new point. In the literature 

it is known that Regression models are local and kriging models are global. Kriging models are 

flexible because of the diversity of the correlogram model obtained from the experiments. 

Therefore, it reveals the importance of the kriging part to develop a global metamodel for the 

whole search space. 

There are several names of this method in the DACE literature. Some of them are as follows. 

Kriging [3, 5-16], spatial correlation metamodels [8, 17, 18], Gaussian process models [4, 19, 20], 

Gaussian stochastic process models [21, 22], Gaussian kriging [21] are used as the name of the 

method in the related references. In the geostatistical literature this method is called regression 

kriging [23, 24]. Some authors variously call this method as regression with residual simple 

kriging [25], detrended kriging [26, 27] and residual kriging [28, 29]. I prefer to use 

“DACE-Kriging” in the metamodeling process as the same meaning with the “regression 

kriging” in Geostatistics as the name for this method to prevent some misunderstanding 

because the kriging term refer to a general class of geostatistical interpolation methods. 

The aim of this study is to examine the limitations of the prediction performance of the 

DACE-kriging metamodel. The results of this study show that the regression part of the DACE-

Kriging model is the most important part to develop an approximation, and if there is a spatial 

relationship of the residuals, kriging part will also contribute to the improvement of the 

prediction performance. Otherwise, kriging will have no contribution to the DACE-Kriging 

model, and even worsen the prediction performance. If the regression part perfectly fit to the 

observations, the residual will have poor spatial relationship and the kriging part will be 

meaningless anymore. 

Remaining of this article as follows. Model formulation of DACE-Kriging metamodel is 

presented in Section 2, numerical examples are given in Section 3, and Section 4 presents 

conclusions. 
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MODEL FORMULATION OF DACE-KRIGING METAMODEL 

DACE-Kriging metamodel is a mixed estimation method that is a combination of multiple 

regression methods and simple kriging. It can be defined as the estimation of residual values 

obtained from the difference between the estimation values made by methods such as 

regression and the observation values by kriging method [3]. Simply, prediction at each new 

point is performed by summing the predicted trend and residual. Predicted trend is obtained by 

linear or quadratic regression (or higher order) and predicted residual is obtained by simple 

kriging applied to regression residuals. 

Model assumptions of Y(𝐱) are given in the followgin equations: 

 Y(𝐱) = M(𝐱) + Z(𝐱), (1) 

 M(𝐱) = ∑ βjfj(𝐱)b
j=0 , (2) 

 Z(𝐱) = Y(𝐱) − M(𝐱), (3) 

 Z(𝐱) = Y(𝐱) − ∑ βjfj(𝐱)b
j=0 . (4) 

DACE-Kriging predictor is given in the following two equations: 

 ŷ(𝐱𝟎) = ∑ βjfj(𝐱𝟎)b
j=0 + ∑ λi

n
i z(𝐱𝐢), (5) 

 ŷ(𝐱𝟎) = ∑ βjfj(𝐱𝟎)b
j=0 + ∑ λi(

n
i y(𝐱𝐢) − ∑ βjfj(𝐱𝐢)

b
j=0 ). (6) 

The first part of the model in (5) and (6) shows the regression model and the second part shows 

the simple kriging model. Where, 𝐱𝟎 is a new point vector for prediction, 𝐱𝐢 is the observed 

point vector, βj is the j. coefficients of the regression model, fj indicates j. regression design 

unit and f0 is equal to 1. DACE-Kriging predictor can be rewritten as a vector form in (7) and (8). 

 ŷ(𝐱𝟎) = 𝐟𝐨
′ �̂� + 𝛌′𝐙, (7) 

 ŷ(𝐱𝟎) = 𝐟𝐨
′ �̂� + 𝛌′(𝐲 − 𝐟′�̂�). (8) 

Where, 𝐙 is residual vector, 𝐟𝟎 is design vector of input variables at 𝐱𝟎, �̂� is regression model 

parameters vector and 𝛌 is the kriging weights vector. Considering the spatial correlation of 

the residuals, the model coefficients are solved with the following generalized least squares 

estimator [2]. 

 �̂� = (𝐟′R−1𝐟)−𝟏𝐟′R−1𝐲, (9) 

 𝛌 = R−1𝐫. (10) 

Where, 𝐟 is the input variables design matrix at the observation point, 𝐘 is the observation 

vector, 𝐫 is the correlogram vector of new point, and R is the nxn-dimensional correlogram 

matrix of the residuals. R and 𝐫 are obtained from correlogram model. 

 r(x1 − x1) ….. r(x1 − xn) 

R = …. ….. …. 

 r(xn − x1) ….. r(xn − xn) 

The covariogram is estimated with the following equation: 

 �̂�(𝐡) =
𝟏

𝐧(𝐡)
∑ (𝐙(𝐱𝐢) − 𝛍)(𝐙(𝐱𝐢 + 𝐡) − 𝛍)

𝐧(𝐡)
𝐢=𝟏 , (11) 
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where ĉ(h) is the covariogram estimator, μ is the mean of the stochastic process and ĉ(0) =
σ2  is the variance of the stochastic process, n(h) is the number of experiment pairs. The 

correlogram is estimated as in (12). 

 r̂(h) =
ĉ(h)

σ2⁄ , (12) 

where �̂�(h) is the correlogram estimator. A theoretical correlogram is used to calculate the 

kriging weights for each point. Theoretical correlogram model must fit to the experimental 

correlogram. General theoretical correlogram model is given in (13). Where, θi  is the 

correlogram model parameter, hi is the univariate distance and pi is the power of the model 

valued one or two [3, 30-32]. Estimation of parameters in (13) is realized by maximum 

likelihood estimation method (MLE) or least squares estimator. Some mostly used theoretical 

correlogram models regarded Euclidean norm are given in Table 1.  

 r(h) = ∏ exp (−(θihi)
pik

i=1 ). (13) 

Table 1. Theoretical correlogram models. 

Model name Model 

Gaussian r(h) = exp (−(h
θ⁄ )

2
) 

Exponential r(h) = exp (− h
θ⁄  ) 

Linear r(h) = max  (1 − θh, 0) 

Mathern 1 r(h) = exp (1 − θh) (1 + θh + θ2h2

3⁄ ) 

Mathern 2 r(h) = exp (−θh) (1 + θh) 

NUMERICAL EXAMPLES 

Numerical examples are performed on the four test problems which are Six-hump camel back 

function, Perm function, Stablinski–Tang function and Quintic function given in the Table 2. 

LHD is the one of the popular experimental design methods for computer experiments since 

developed by Mc Kay et al. [33]. It is convenient both for kriging and regression because of 

the space filling property. The levels of each factor are included in the design once. All factors 

have the same number of levels. Experiments are designed as many as the number of levels. In 

this design, the permutation of the levels is determined randomly. Training and validation 

datasets are generated with LHD. Training datasets consisting of 20, 27, 45 and 72 experiment 

were generated for the test problems (Six-hump camel back function, Perm function, 

Stablinski–Tang function, Quintic function). Since the kriging models are the best unbiased 

linear estimators, the validation data set consisting of 500 experiments was generated for each 

test problem. The validation is assessed by standard accuracy measures. The measures used in 

this study are Root Mean Squared Error (RMSE) and R2 given as follows: 

 RMSE = √
1

n
∑ (y(𝐱𝐢)

n
i=1 − ŷ(𝐱𝐢))2, (14) 

 R2 = 1 − ∑ (y(𝐱𝐢) − ŷ(𝐱𝐢)
n
i=1 )2/ ∑ (y(𝐱𝐢)

n
i=1 − y̅)2. (15) 
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Table 2. Test functions. 

No. Function Name Test Functions 

1 
Six-hump camel 

back 

f(x) = (4 − 2.1x1
2 +

1

3
x1

4) x1
2 + x1x2 + (−4 + 4x2

2)2x2
2 

−3 ≤ x1 ≤ 3, −2 ≤ x2 ≤ 2 

2 Perm 
f(x) = ∑(∑(j + 10)(xj

i −
1

ji
))2

3

j=1

3

i=1

 

−3 ≤ xi ≤ 3 

3 Styblinski–Tang 
f(x) = 0.5 ∑(xi

4

5

i=1

− 16xi
2 + 5xi) 

−5 ≤ xi ≤ 5 

4 Quintic 
f(x) = ∑|xi

5 − 3xi
4 + 4xi

3 + 2xi
2 − 10xi − 4|

8

i=1

 

−10 ≤ xi ≤ 10 

Linear regression and quadratic regression parameters were estimated with (9) for four 

numerical examples. Residual values were calculated with (4). By applying simple kriging to 

the residuals as given by (5), estimation errors for validation points were obtained. 

Table 3. RMSE of the metamodels. 

No. Function Name LR QR LR+SK QR+SK 

1 
Six-hump camel 

back 
31,5011 16,1573 19,94 13,8584 

2 Perm 87761,27 44295,82 66390,76 44085,06 

3 Styblinski–Tang 75,056 69,770 72,124 70,726 

4 Quintic 79565,51 58847,17 59626,04 59437,34 

LR in the Table 3 denotes linear regression and QR denotes quadratic regression. LR+SK 

shows simple kriging applied to linear regression residuals and QR+SK shows simple kriging 

applied to quadratic regression residuals. Considering the RMSE, it is seen that the residuals 

after LR have a spatial relationship for all test problems and the DACE-Kriging model 

produces more successful predictions when SK is applied to the residuals. According to RMSE, 

the DACE-Kriging model, as a result of the SK applied to the residuals after QR, produced 

more successful predictions at the validation points for the first and second test problems, and 

the prediction success at the validation points for the third and fourth test problems was worse 

due to the weak spatial relationship of the residuals. 
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Table 4. R2 of the metamodels. 

No. Function Name LR QR LR+SK QR+SK 

1 Six-hump camel back –0,357 0,645 0,459 0,739 

2 Perm –0,068 0,728 0,389 0,731 

3 Styblinski–Tang –0,028 0,111 0,048 0,087 

4 Quintic 0,014 0,458 0,460 0,447 

According to the R2 performance criterion given in Table 4, QR produces better predictions 

for all test problems than the LR and LR+SK models. QR+SK gives better prediction 

performance for the first and second test problems because of the spatial relationship of the 

residuals among all applied models, and worse for the third and fourth test problems due to the 

weak spatial relationship of the residuals at the validation points. 

These four test problems show that the regression part of the DACE-Kriging model is the most 

important part of the model, and if there is a spatial relationship of the residuals, the SK model will 

also contribute to the improvement of the prediction performance. Otherwise, the SK will have no 

contribution to the DACE-Kriging model, and even worsen the prediction performance. 

CONCLUSION 

QR produces better predictions for all test problems than the LR and LR+SK models. QR+SK 

gives better prediction performance for the first and second test problems because of the spatial 

relationship of the residuals among all applied models, and worse for the third and fourth test 

problems due to the weak spatial relationship of the residuals at the validation points. 

These four test problems show that the regression part of the DACE-Kriging model is the most 

important part of the model, and if there is a spatial relationship of the residuals, the SK model will 

also contribute to the improvement of the prediction performance. Otherwise, the SK will have no 

contribution to the DACE-Kriging model, and even worsen the prediction performance. 

Future studies will focus on developing new kriging approaches to increase the prediction 

performance of the metamodel. 

REFERENCES 

[1] Matheron, G.: Principles of geostatistics. 
Economic Geology 58, 1246-1266, 1963, 

https://dx.doi.org/10.2113/gsecongeo.58.8.1246, 

[2] Cressie, N.A.C.: Statistics for Spatial Data. 
A Wiley-Interscience publication, New York, 1993, 

[3] Sacks, J., et al.: Design and analysis of computer experiments. 
Statistical Science 4, 409-435, 1989, 

http://dx.doi.org/10.1214/ss/1177012413, 

[4] Santner, T.J.; Williams B.J. and Notz, W.I.: The Design and Analysis of Computer 

Experiments. 2nd edition. 
Springer, New York, 2019, 

[5] Simpson, T., et al.: On the use of statistics in design and the implications for deterministic 

computer experiments. 
Proceedings of DETC’97 ASME Design Engineering Technical Conferences. Sacramento, 

pp.1-14, 1997, 

https://dx.doi.org/10.2113/gsecongeo.58.8.1246
http://dx.doi.org/10.1214/ss/1177012413


M. Balaban 

322 

[6] Jin, R.; Chen, W. and Simpson, T.: Comparative Studies of Metamodeling Techniques 

Under multiple modeling criteria. 

8th Symposium on Multidisciplinary Analysis and Optimization. AIAA, Long Beach, 2000, 

http://dx.doi.org/10.2514/6.2000-4801, 

[7] Jones, D.R.: A Taxonomy of Global Optimization Methods Based on Response Surfaces. 

Journal of Global Optimization 21, 345-383, 2001, 
http://dx.doi.org/10.1023/a:1012771025575, 

[8] Meckesheimer, M., et al.: Metamodeling of Combined Discrete/Continuous Responses. 
American Institute of Aeronautics and Astronautics 39(10), 1950-1959, 2001, 

http://dx.doi.org/10.1115/detc2000/dtm-14573, 

[9] Srivastava, A., et al.: A method for using legacy data for metamodel-based design of 

large-scale systems. 
Structural and Multidisciplinary Optimization 28, 146-155, 2004, 

http://dx.doi.org/10.1007/s00158-004-0438-4, 

[10] Kim, B.S.; Lee, Y.B. and Choi, D.H.: Comparison study on the accuracy of metamodeling 

technique for non-convex functions. 
Journal of Mechanical Science and Technology 23, 1175-1181, 2009, 

http://dx.doi.org/10.1007/s12206-008-1201-3, 

[11] Martin, J.D.: Using Kriging Models to Perform Sensitivity Analysis. 
American Institute of Aeronautics and Astronautics 2011-2156, 1-11, 2011, 

http://dx.doi.org/10.2514/6.2011-2156, 

[12] Nik, M.A., et al.: A comparative study of metamodeling methods for the design optimization 

of variable stiffness composites. 

Composite Structures 107, 494-501, 2014, 
http://dx.doi.org/10.1016/j.compstruct.2013.08.023, 

[13] Van Gelder, L., et al.: Comparative study of metamodeling techniques in building energy 

simulation: Guidelines for practitioners. 
Simulation Modelling Practice and Theory 49, 245-257, 2014, 
http://dx.doi.org/10.1016/j.simpat.2014.10.004, 

[14] Dong, H., et al.: Kriging-assisted discrete global optimization (KDGO) for black-box 

problems with costly objective and constraints. 
Applied Soft Computing Journal 94, 1-17, 2020, 
http://dx.doi.org/10.1016/j.asoc.2020.106429, 

[15] Zhou, C., et al.: Reliability and sensitivity analysis of composite structures by an adaptive 

kriging- based approach. 
Composite Structures 278, 1-12, 2021, 

http://dx.doi.org/10.1016/j.compstruct.2021.114682, 

[16] Wang, J.; Sun, Z. and Cao R.: An efficient and robust Kriging-based method for system 

reliability analysis. 
Reliability Engineering and System Safety 216, 1-19, 2021, 

http://dx.doi.org/10.1016/j.ress.2021.107953, 

[17] Barton, R.R.: Metamodels for simulation input-output relation. 
In: Swain, J.J.; Goldsman, D.; Crain, R.C. and Wilson, J.R.: Proceedings of the 24th conference 

on Winter simulation. IEEE, Arlington, pp.289-299, 1992, 

http://dx.doi.org/10.1145/167293.167352, 

[18] Barton, R.R.: Simulation metamodels. 
In: 1998 Winter Simulation Conference. IEEE, Washington, pp.167-174, 1998, 

http://dx.doi.org/10.1109/WSC.1998.744912, 

[19] Marrel, A., et al.: Calculations Sobol indices for the Gaussian process metamodel. 
Reliability Engineering and System Safety 94, 742-751, 2009, 

http://dx.doi.org/10.1016/j.ress.2008.07.008, 

http://dx.doi.org/10.2514/6.2000-4801
http://dx.doi.org/10.1023/a:1012771025575
http://dx.doi.org/10.1115/detc2000/dtm-14573
http://dx.doi.org/10.1007/s00158-004-0438-4
http://dx.doi.org/10.1007/s12206-008-1201-3
http://dx.doi.org/10.2514/6.2011-2156
http://dx.doi.org/10.1016/j.compstruct.2013.08.023
http://dx.doi.org/10.1016/j.simpat.2014.10.004
http://dx.doi.org/10.1016/j.asoc.2020.106429
http://dx.doi.org/10.1016/j.compstruct.2021.114682
http://dx.doi.org/10.1016/j.ress.2021.107953
http://dx.doi.org/10.1145/167293.167352
http://dx.doi.org/10.1109/WSC.1998.744912
http://dx.doi.org/10.1016/j.ress.2008.07.008


Review of DACE-kriging metamodel 

323 

[20] Schweidtmann, A.M., et al.: Deterministic global optimization with Gaussian processes 

embedded. 

Mathematical Progamming Computation 13, 553-581, 2021, 
http://dx.doi.org/10.1007/s12532-021-00204-y, 

[21] Shao, W., et al.: Extended Gaussian Kriging for computer experiments in engineering design. 
Engineering with Computers 28, 161-178, 2012, 
http://dx.doi.org/10.1007/s00366-011-0229-7, 

[22] Erickson, C.B.; Ankenman, B.E. and Sanchez, S.M.: Comparison of Gaussian process 

modeling software. 

European Journal of Operational Research, Elsevier 266(1), 179-192, 2018, 
http://dx.doi.org/10.1016/j.ejor.2017.10.002, 

[23] Odeh, I.; McBratney, A. and Chittleborough, D.: Further results on prediction of soil 

properties from terrain attributes: heterotopic cokriging and regression-kriging.  
Geoderma 67(3-4), 215-226, 1995, 

http://dx.doi.org/10.1016/0016-7061(95)00007-b, 

[24] Hengl, T.; Heuvelink, G.B.M. and Rossiter, D.G.: About regression-kriging: From 

equations to case studies. 

Computers and Geosciences 33(10), 1301-1315, 2007, 
http://dx.doi.org/10.1016/j.cageo.2007.05.001, 

[25] Asli, M. and Marcotte, D.: Comparison of approaches to spatial estimation in a bivariate 

context. Mathematical Geology 27, 641-658, 1995, 

http://dx.doi.org/10.1007/bf02093905, 

[26] Jef, H., et al.: Spatial interpolation of ambient ozone concentrations from sparse 

monitoring points in Belgium. 

Journal of Environmental Monitoring 8, 1129-1135, 2006, 

http://dx.doi.org/10.1039/b612607n, 

[27] Nalder, I.A. and Wein, R.W.: Spatial interpolation of climatic Normals: test of a new 

method in the Canadian boreal forest. 
Agricultural and Forest Meteorology 92, 211-225, 1998, 

http://dx.doi.org/10.1016/s0168-1923(98)00102-6, 

[28] Mardikis, M.G.; Kalivas, D.P. and Kollias, V.J.: Comparison of interpolation methods for 

the prediction of reference evapotranspiration - an application in Greece.  

Water Resources Management 19, 251-278, 2005,  
http://dx.doi.org/10.1007/s11269-005-3179-2, 

[29] Reyes, A., Giraldo R. and Mateu, J.: Residual Kriging for Functional Spatial Prediction 

of Salinity Curves. 

Communications in Statistics - Theory and Methods 44(4), 798-809, 2015, 
http://dx.doi.org/10.1080/03610926.2012.753087, 

[30] Mitchell, T.J. and Morris, M.D.: Bayesian design and analysis of computer experiments: 

two examples. 

Statistica Sinica 2, 359-379, 1992, 

[31] Kleijnen, J.P.C.: Kriging metamodeling in simulation: a review. 
European Journal of Operational Research 192, 707-716, 2009, 
http://dx.doi.org/10.1016/j.ejor.2007.10.013, 

[32] Kleijnen, J.P.C.: Regression and kriging metamodels with their experimental designs in 

simulation: a review. 
European Journal of Operational Research 256, 1-16, 2017, 
http://dx.doi.org/10.1016/j.ejor.2016.06.041, 

[33] Mc Kay, M.G.D.; Beckman, R.J. and Conover, W.J.: A comparison of three methods for 

selecting values of input variables in the analysis of output from a computer code. 

Technometrics 21, 239-245, 1979, 

http://dx.doi.org/10.1080/00401706.1979.10489755. 

http://dx.doi.org/10.1007/s12532-021-00204-y
http://dx.doi.org/10.1007/s00366-011-0229-7
http://dx.doi.org/10.1016/j.ejor.2017.10.002
http://dx.doi.org/10.1016/0016-7061(95)00007-b
http://dx.doi.org/10.1016/j.cageo.2007.05.001
http://dx.doi.org/10.1007/bf02093905
http://dx.doi.org/10.1039/b612607n
http://dx.doi.org/10.1016/s0168-1923(98)00102-6
http://dx.doi.org/10.1007/s11269-005-3179-2
http://dx.doi.org/10.1080/03610926.2012.753087
http://dx.doi.org/10.1016/j.ejor.2007.10.013
http://dx.doi.org/10.1016/j.ejor.2016.06.041
http://dx.doi.org/10.1080/00401706.1979.10489755

