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ABSTRACT 

This article explores a number of questions regarding optimal strategies evolved by viruses upon entry 

into a vertebrate host. The infected cell life cycle consists of a non-productively infected stage in which 

it is producing virions but not releasing them and of a productively infected stage in which it is just 

releasing virions. The study explores why the infected cell cycle should be so delineated, something 

which is akin to a classic “bang-bang control” or all-or-none principle. The times spent in each of these 

stages represent a viral strategy to optimize peak viral load. Increasing the time spent in the 

non-productively infected phase (τ1) would lead to a concomitant increase in peak viremia. However 

increasing this time would also invite a more vigorous response from Cytotoxic T-Lymphocytes. 

Simultaneously, if there is a vigorous antibody response, then we might expect τ1 to be high, in order 

that the virus builds up its population and conversely if there is a weak antibody response, τ1 might be 

small. These trade-offs are explored using a mathematical model of virus propagation using Ordinary 

Differential Equations. The study raises questions about whether common viruses have actually settled 

into an optimum, the role for reliability and whether experimental infections of hosts with non-endemic 

strains could help elicit answers about viral progression. 
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INTRODUCTION 

A normal cell upon infection goes through a life cycle characterized by 2 phases: a stage in 

which it is producing virions but not releasing it (non-productively infected stage) and a stage 

in which it is releasing virions into the outside environment (productively infected stage). 

Hence there is a delay between infection and release of virions. In whatever follows, we denote 

the time spent in the non-productively infected stage as τ1 and the time spent in the productively 

infected stage as τ2. The time in τ1 is spent in viral penetration, uncoating of viral core, 

transcription and assembly. 

The number of virions produced over the entire infected cell life cycle is directly proportional 

to τ1 + τ2. It is asked whether the virus might be trying to maximize this quantity in order to 

optimize “virulence” (a quantity which shall be concretized shortly). The question of why there 

need be 2 distinct phases and not just one where virion production and release occur 

simultaneously, also cries out for explanation. Such forms of delineation are called “bang-bang 

control” or the all-or-none principle and are characterized by a phase of proliferation and then 

terminal differentiation, and are frequently encountered in optimal biological systems [1]. 

If the total length of the infected cell lifetime is a measure of “virulence”, we can then set a 

theoretical upper bound on it and then compare it with its actual value from field measurements. 

This would give us a qualitative understanding of “how far” the virus can still go in optimizing 

itself e.g. it can be used to determine if the avianinfluenza virus is already as virulent as it can 

be or is it still sub-optimal. 

The rest of the article is organized as follows: Section 2 discusses arguments for optimization 

in biological systems and Section 3 introduces the principle of “bang-bang control”. The 

hypotheses and questions are posed in Section 4 and Section 5 outlines the mathematical model. 

Section 6 contains the results and discussions and concluding remarks are presented in Section 7. 

OPTIMISATION IN A BIOLOGICAL SYSTEM 

Before commencing with the mathematical analysis we state what our modeling philosophy 

will be and give some justification for employing such an approach. First of all, there is 

certainly no a priori reason why virus propagation – or any other biological system – should 

operate in an “optimal” fashion. Indeed there is a substantive issue as to whether the notion of 

“optimality” can be given an operational meaning for many biological systems. Typically, an 

organism or a virus is forced to cope with a number of competing influences so that an 

improvement in one direction involves a sacrifice in another. Thus optimality must be 

interpreted in a broader sense as a “best compromise” solution. Beyond this consideration, 

however, there are at least two major reasons why a particular biological system might not be 

performing its function in the most expeditious fashion. First, despite the fact that one tends to 

think of natural selection as an inherently optimizing process, improvements on existing 

mechanisms generally proceed by small modifications of existing structures. Thus, there is 

ample opportunity for the system to become trapped in “local” maxima; there may be “nearby” 

structures with higher fitness but to reach them may require a temporary, but fatal, decrease in 

overall fitness. Second, while the system may be constantly improving, evolution is a slow and 

erratic process so that any system we examine may not have had time to optimize under existing 

selective pressures. Both of the objections may be partially circumvented by restricting 

attention to systems which appear to have been evolutionarily static for a long time. The 

mammalian immune system and viruses surely fulfil this criterion. 

A virus typically only wants to proliferate in a host only so much as to ensure transmission to 

another host (an exception is the Ebola virus which kills its host so fast as to prevent 
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propagation to another host). Hence it is trying to optimize the basic reproductive ratio R0 in 

epidemic models. In vector-borne pathogens, the peak viremia in blood serum is a very good 

determinant of R0 [2]. Hence, we assume that the virus is trying to optimize the peak viral load 

in blood serum (Pv). 

BANG-BANG CONTROL 

In a seminal paper [1], Perelson et al. examined the mammalian immune system and looked at 

optimal strategies for B-cell proliferation and differentiation. They used control theoretic 

principles to analyze the minimum time taken by the immune system to eliminate a fixed 

amount of antigen in the shortest span of time. The problem briefly stated is as follows: given 

an initial population of B-cells (which secrete antibodies at a modest rate, proliferate into B-

cells or differentiate into plasma cells) and plasma cells (which secrete antibodies at a very 

high rate but do not proliferate), how do you apportion the total population between B-cells 

and plasma cells? Does the optimal strategy involve proliferation of B-cells followed by 

differentiation into plasma cells? Or does it involve simultaneous B-cell proliferation and 

differentiation? The authors showed using optimal control theory that the optimal strategy for 

B-cells is to go through a stage of proliferation (to build up their population) and then 

differentiate into plasma cells. Such a control is called “bang-bang” or all-or-none. It is not 

immediately evident or intuitive that a strategy of simultaneous B-cell proliferation and 

differentiation is not optimal. 

A parallel is drawn between that work and the problem at hand here, where the infected cell 

also goes through a phase of production of virions followed by a phase of virion release. The 

reasons for “bang-bang control” in the infected cell system and its implications are explored in 

the following sections. 

HYPOTHESES AND QUESTIONS 

This section explores some of the hypotheses proposed and frames some questions. There are 

two hypotheses about the non-productively infected stage of the infected cell: 

HYPOTHESIS . 

The virus is not trying to optimize the duration of the non-productive infected stage (τ1). Hence 

this time is exactly equal to the time required for viral penetration, uncoating of viral core, 

transcription and assembly. The interpretation is that as soon as the first complete virions is 

assembled, the infected cell immediately proceeds to release the virion i.e. it switches to the 

next phase of productive infection. The obvious disadvantage of this strategy is that the amount 

of virions produced would be reduced, compared to an approach in which τ1 is increased. 

Clearly this strategy is sub-optimal and we do not explore it further. 

HYPOTHESIS 2 

The virus is trying to optimize peak viral load and hence viral production. However it cannot 

increase the duration of the productive infected stage (τ2). This is so because there are 

physiological limits imposed by the area and strength of the cell wall, which will constrain the 

duration of virion release. After a threshold, the cell wall will simply fall apart. It can only 

increase the duration of the non-productive infected stage (τ1). 

Hypothesis 2a 

Having a high τ1 would imply an increased virion release count. However, this would come at 

the cost of increased susceptibility to lysis by Cytotoxic T-Lymphocytes (CTLs). A lower τ1 

would reduce the susceptibility to CTL mediated lysis at the expense of a reduced virion count. 
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Hypothesis 2b 

The virus might optimize itself such that it bursts early in the face of a weak antibody response. 

Conversely, it could burst later (after building up a pool of virions) when confronted with a 

vigorous antibody response. 

There are two attributed research questions: 

RQ1: Why cannot τ1 increase indefinitely? 

RQ1: Why is the optimal control “bang-bang”? 

MATHEMATICAL FORMULATION 

A standard mathematical model of virus propagation adapted from Baccam et al. [3] is 

constructed to test the hypothesis. Ordinary Differential Equations (ODEs) are used to 

represent populations of virus, infected cells and normal cells. The equations are as follows: 

 
d𝑇

d𝑡
= −𝛽𝑇𝑉,  

 
d𝐼1

d𝑡
= 𝛽𝑇𝑉 − 𝑘𝐼1 − 𝜔𝐶𝑇𝐿𝐼1,  

 
d𝐼2

d𝑡
= 𝑘𝐼1 − 𝛿𝐼2,  

 
d𝑉

d𝑡
= 𝑝𝐼2 − 𝑐𝑉,  

where T is target cell population, I1 – non-productively infected cell population, 

I2 – productively infected cell population, V – virus population, β – rate constant of infection, 

k – rate of death of non-productively infected cells, δ – rate of death of productively infected 

cells, ωCTL = rate of CTL-mediated lysis of non-productively infected cells, p – number of 

virions produced per productively infected cell per time step and c – rate of clearance of free 

virus particles. 

We also get τ1 = 1/k and τ2 = 1/δ. 

In this simple ODE model, the population of target cells (normal and uninfected cells) are 

represented by the variable T. They are also lost due to infection, which is represented by the 

term –β·T·V. The non-productively infected cells (I1) are supplied by the loss from the target-

cell pool and die at a rate proportional to their number density with constant of proportionality 

k. They are also lysed by (Cytotoxic T-Lymphocytes) CTLs at a rate proportional to their 

density and with a constant of proportionality of ωCTL. Productively infected cells (I2) are 

replenished from the non-productive pool and die at a rate proportional to their density and 

with a constant of proportionality of δ. New virions (V) are produced by infected cells at the 

rate p·I2 and virions are lost at a rate proportional to the virus concentration with constant of 

proportionality c (representing antibody-mediated virion clearance). 

The variation in ωCTL has been modelled in a time-dependent fashion. Namely it is made to 

mimic the clonal expansion of a pool of effector CTLs after day 4. 

 𝜔𝐶𝑇𝐿 = {
0, 𝑡 < 4,

Ω ⋅ exp[𝜃(𝑡 − 4)] , 𝑡 ≥ 4.
  

The model was parameterized from a study of experimental infection of Influenza A virus in 

humans [3]. The model was implemented in the Berkeley Madonna package [14] and the code 

is freely available for download [15]. The model parameters are shown in Table 1. 

Table 1. Estimated parameter values from Baccam et al. [3]. 

Parameter 
, 

ml/(TCID50·day) 

 , 

day–1 

p, 

ml/(TCID50·day) 

k, 

day–1 

c, 

day–1 
T0 

V0, 

TCID50/ml 

Value 4,9·10–5 4,2 2,8·10–2 3,9 4,3 4·108 4,3·10–2 
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RESULTS AND DISCUSSION 

The model as outlined in the previous section, thus parameterized, was used to test the hypothesis. 

TEST OF HYPOTHESIS 2A 

Restating, having a high τ1 would imply an increased virion release count with cost of an 

increased susceptibility to lysis by Cytotoxic T-Lymphocytes (CTLs). A lower τ1 would reduce 

the susceptibility to CTL mediated lysis at the expense of a reduced virion count. 

As a result, we observed that the optimal strategy was to increase τ1 till a threshold (in this 

particular case it was found to be just less than 4 days). Incidentally, day 4 is also the time at 

which CTL action is initiated. Hence, the optimal strategy for the virus is to continue the 

non-productively infected phase till just before CTL initiation. Till CTL action is initiated, the 

virus will continue to build its population. Increasing τ1 beyond 4 days would lead to loss of 

produced virions due to CTL-mediated infected cell lysis. Any decrease below 4 days would 

reduce the total virus production and hence peak viremia. Hence the optimal control is 

“bang-bang”, Figure 1. Bang-bang control strategies have also been known to be optimal in 

other biological systems like differentiation of B-cells and production of plant seeds [1]. Note 

that due to the use of a continuous ODE system (which mimics biology more closely) as 

opposed to a delay-differential equation, some infected cells do burst earlier than day 4. 

 

Figure 1. Predicted plot of logged viremia (log10TCID50/ml) versus time in days for Hypothesis 2a. 

TEST OF HYPOTHESIS 2B 

Restating, the virus might optimize itself such that it bursts early in the face of a weak antibody 

response. Conversely, it could burst later (after building up a pool of virions) when confronted 

with a vigorous antibody response. 

Result: The antibody response was varied by manipulation of the virion clearance term c in the 

ODE system. It was found that the optimal strategy remained conserved under variations in the 

antibody response i.e. the optimal strategy for the virus was always to burst at τ1 = 4 days. We 

can reason about this in the following manner: increasing τ1 beyond 4 days would lead to loss 

of produced virions due to CTL-mediated infected cell lysis and any decrease below 4 days 

would reduce the total virus production and hence peak viremia. Hence antibody response has 

no effect on τ1 – a fact that is perhaps not intuitively obvious. 
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Figure 2. Predicted plot of logged viremia (log10TCID50/ml) versus time in days for 

Hypothesis 2b, a) low antibody response with τ1 = 4 days, b) high antibody response with 

τ1 = 4 days. The optimal strategy remains the same (burst just before time to CTL initiation). 

WHY CANNOT  1 INCREASE INDEFINITELY? 

From the preceding discussion, it becomes evident that if τ1 were to increase indefinitely 

beyond the time to CTL initiation, then there would be a concomitant decrease in virion output due 

to CTL-mediated infected cell lysis. Hence the time to CTL initiation sets an upper bound on τ1. 

WHY IS THE OPTIMAL CONTROL “BANG-BANG”? 

Due to physiological limits on cell wall integrity, the time spent in the productively infected 
phase (τ1) must be limited. Any attempt to increase it beyond a threshold would merely cause 
the whole cell wall to break down. Hence, in order to increase virus production, the only 
“recourse” the virus has is to increase the time spent in the non-productively infected phase 
and build up the virus population until onset of CTLs. This naturally gives rise to 2 delineated 
phases (“bang-bang control”). Any intermediate graded response i.e. virion production 
occurring simultaneously with release is essentially equivalent to the productively infected 

a) 

b) 
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phase and since the time that can be spent in it is severely limited, we see that it is a sub-optimal 
strategy. Such strategies are also optimal in diverse biological systems ranging from 

differentiation of B-cells in the immune system to allocation of energy to seeds in plants [1]. 

CONCLUSIONS 

This work visits virus proliferation from an optimization viewpoint. A few basic assumptions 
are made: a) the time spent in the productively infected phase is constant and cannot be 
subjected to optimization beyond a threshold, and b) the virus is trying to optimize virion 
production and hence peak viremia. Starting from these assumptions, it is posited that the 
optimal strategy for virus proliferation is to delay burst till onset of Cytotoxic T-Lymphocytes. 
This so called “bang-bang control” or all-or-none principle is exhibited in many other 
biological systems like ant colonies and annual plants [1]. However, optimization may not be 
the only principle at work. In fact, considerations of reliability may be invoked to explain the 
presence of long-lived latently infected cells (e.g. HIV). These long-lived cells evade detection 
by CTLs and ensure a prolonged viremia in hosts. 

Another conclusion, which is not intuitively obvious, is the fact that the optimal strategy of 
allocating the maximum time in the non-productively infected phase remains invariant even in 
the face of a varying antibody response. This strategy is insensitive to the humoral response 
and depends only on the time to CTL initiation. 

The total length of the infected cell lifetime is a measure of “virulence”, and a theoretical upper 
bound has been set on it. Comparing this value to the actual value from field measurements 
would give us a qualitative understanding of “how far” the virus can still go in optimizing itself 
e.g. it can be used to determine if the avian-influenza virus is already as virulent as it can be or 
is it still sub-optimal. In the case of the Influenza A virus from the Baccam et al. study [3], the 
theoretical upper bound on τ1 is around 4 days, whereas the observed is around 12 hours, 
suggesting that the virus is still operating sub-optimally and still has scope to improve by 
mutating itself. Insights like these could be crucial for bio-surveillance efforts and help inform 
strategies to cope with future pandemics caused by virus mutations. 

Lastly, it is instructive to note that experimental infections of hosts with non-endemic strains 
(viral strains that have not co-evolved with the host and hence are not operating in an optimal 
manner) could affect experiment outcome. This would elicit a lower than normal viral response, 
since the viral strategy would now be characterized by Hypothesis 1 i.e. the time spent in the 

productively infected phase (τ1) would just constitute the time required for viral penetration, 
uncoating of viral core, transcription and assembly and no more. 

Clearly more work needs to be done to verify these arguments and an extensive analytical 
treatment of these arguments coupled with more experimental work will be the subject of future 
work. The current work highlights the significance of simple mathematical and dynamical 
models that reveal insights into biological processes as has been done previously in 
immunology and cell biology [4-13]. 
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